This study investigates the detection of community structures in online healthcare forums, specifically targeting diabetes discussions. By analyzing peer interactions across five diabetes forums, the research identifies meaningful communities based on user interaction similarity. Findings indicate that closely similar users frequently co-occur in top communities, with the duration since diagnosis significantly influencing community cohesiveness. This network analysis approach aims to enhance understanding of social dynamics in healthcare, aiding in the personalization of medical social media.
-
Chomutare, Taridzo, et al. "Inferring community structure in healthcare forums." Methods of information in medicine 52.02 (2013): 160-167.
-
Members
- Como
- master963
- JoelR
- IC Essentials
- Steph40
- Analog
- Reydev
- DawPi
- Square Wheels
- eivindsimensen
- PrettyPixels
- onlyME
- Adriano Faria
- Madhouse
- StevenM
- TomCat
- YourSharona
- 666wicked666
- opentype
- N700
- ZLTRGO
- JoeyM
- Labi
- Maxius
- pat
- A Zayed
- Kirill Gromov
- Thesis
- Split
- Drufuss
- muovar
- PPlanet
- Kane
- Daniel N
- Labis
- envy
- Sinistra
- Ryan
- V0RT3X
- Synergy
- Matt
- terabyte
- Mesharsky
- Astronis
- dottbuff
- aLEX49566
- bernhara
- markel
- Charlie Feigel
- Richard Arch
- isvans
- TheJimmo
- Drew Dowdell
- burnyourfeelings
- devvfck
- Jon Erickson
- adik
- kmk
- Voyage
- MichaelR
- sulervo
- LemonGrenade
- PalmersRightPeg
- We are Borg
- MissB
- Patreon Lukazuki
- Mitsuru
- ali hagi
- Hong98
- ijinxcxx
- ijinxcxx4k
- ButterflyPixel
- Luki
- flrn
- rivi235
- Aleksandar Markovic
- BEASTBOOSTER
- GazzaGarratt
- Roblox County DOJ Roleplay
- HDiddy
- Dilip
- Destructor
- AnonDoggo
- Dani Onvlee
- Anthony Feng
- MythonPonty
- GrantHorizons
- abobader
- eliteone
- ArashDev
- Brian
- Cory McElroy
- Videoflicks
- Empire
- Nebulous
- aXenDev
- ITV
- Denis Dyack
- Claudia999
- Ticaga