This paper tackles the detection of depressed users in online forums, focusing on ReachOut.com, a platform where young people anonymously discuss issues like depression. It highlights the increasing rates of depression among adolescents and young adults, particularly among girls and women. The study analyzes user behavior through linguistic styles and network-based features to predict depression. Findings indicate that network features are strong predictors, and when combined with linguistic features, they achieve an average precision of 0.78, significantly outperforming random classifiers and previous studies.
-
Shrestha, Anu, and Francesca Spezzano. "Detecting depressed users in online forums." Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2019.
-
Members
- opentype
- TheJimmo
- JoelR
- master963
- Drew Dowdell
- IC Essentials
- DawPi
- eivindsimensen
- Square Wheels
- PrettyPixels
- burnyourfeelings
- V0RT3X
- Steph40
- TomCat
- Adriano Faria
- Maxius
- envy
- devvfck
- Sinistra
- onlyME
- Madhouse
- Split
- aLEX49566
- Synergy
- StevenM
- Kirill Gromov
- Matt
- Jon Erickson
- Ryan
- adik
- kmk
- dottbuff
- pat
- Mesharsky
- Drufuss
- bernhara
- Voyage
- terabyte
- PPlanet
- MichaelR
- Astronis
- JoeyM
- ReyDev
- 666wicked666
- Charlie Feigel
- A Zayed
- Thesis
- sulervo
- LemonGrenade
- PalmersRightPeg
- We are Borg
- MissB
- Patreon Lukazuki
- Labi
- Mitsuru
- ali hagi
- Hong98
- ijinxcxx
- ijinxcxx4k
- ButterflyPixel
- Luki
- Labis
- flrn
- rivi235
- Aleksandar Markovic
- Como
- BEASTBOOSTER
- GazzaGarratt
- Roblox County DOJ Roleplay
- HDiddy
- Analog
- Dilip
- Destructor
- AnonDoggo
- Dani Onvlee
- Anthony Feng
- isvans
- MythonPonty
- GrantHorizons
- abobader
- eliteone
- ArashDev
- Brian
- Cory McElroy
- Richard Arch
- Videoflicks
- Empire
- Nebulous
- aXenDev
- ITV
- Denis Dyack
- Claudia999
- Ticaga
- npnchicago
- Chris Anderson
- NewVicious
- UrbanNest Realtors
- Ioannis D
- Paul Cojocariu
- Yurii