This article presents a methodology for analyzing big data from online communities to identify ideas relevant to new product development and innovation. By employing a research design involving two human raters to classify 3,000 texts into idea and non-idea categories, followed by the application of text mining techniques and machine learning to train a classification model, the study demonstrates the effectiveness of using advanced analytical tools to detect ideas within large volumes of text. The method offers a systematic approach for researchers and firms to harness the innovation potential of online communities.
-
Christensen, Kasper, et al. "In search of new product ideas: Identifying ideas in online communities by machine learning and text mining." Creativity and Innovation Management 26.1 (2017): 17-30.
-
Members
- StevenM
- Madhouse
- envy
- Split
- JoelR
- V0RT3X
- DawPi
- Steph40
- Adriano Faria
- Square Wheels
- TomCat
- opentype
- PrettyPixels
- Matt
- master963
- Maxius
- onlyME
- Jon Erickson
- Ryan
- adik
- kmk
- IC Essentials
- Kirill Gromov
- dottbuff
- pat
- eivindsimensen
- Mesharsky
- Drufuss
- Synergy
- bernhara
- Voyage
- terabyte
- PPlanet
- MichaelR
- Sinistra
- Astronis
- JoeyM
- ReyDev
- burnyourfeelings
- 666wicked666
- Charlie Feigel
- A Zayed
- Thesis
- sulervo
- LemonGrenade
- PalmersRightPeg
- We are Borg
- MissB
- aLEX49566
- TheJimmo
- Patreon Lukazuki
- Labi
- Mitsuru
- ali hagi
- Hong98
- ijinxcxx
- ijinxcxx4k
- ButterflyPixel
- Luki
- Labis
- flrn
- rivi235
- Aleksandar Markovic
- Como
- BEASTBOOSTER
- GazzaGarratt
- Roblox County DOJ Roleplay
- HDiddy
- Analog
- Dilip
- Destructor
- AnonDoggo
- Dani Onvlee
- Anthony Feng
- isvans
- MythonPonty
- GrantHorizons
- abobader
- eliteone
- ArashDev
- Brian
- Cory McElroy
- Richard Arch
- Videoflicks
- Empire
- Nebulous
- aXenDev
- ITV
- Denis Dyack
- Claudia999
- Ticaga
- npnchicago
- Chris Anderson
- NewVicious
- UrbanNest Realtors
- Ioannis D
- Paul Cojocariu
- Yurii
- rnorth6920
- Dancho Danchev