This paper proposes an approach to discover expertise networks within online communities by analyzing textual information and social links. The approach computes the topic-focus degree of documents and measures document quality based on user feedback behaviors and the topic-specific influence of users providing feedback. By considering both user expertise rank and social links, the approach constructs expertise networks. Experiments conducted on real datasets demonstrate the effectiveness of the approach in discovering meaningful expertise networks within online communities.
-
Li, Yanyan, et al. "Expertise network discovery via topic and link analysis in online communities." 2012 IEEE 12th International Conference on Advanced Learning Technologies. IEEE, 2012.
-
Members
- StevenM
- JoelR
- eivindsimensen
- Steph40
- Square Wheels
- Adriano Faria
- Reydev
- opentype
- IC Essentials
- N700
- PrettyPixels
- ZLTRGO
- JoeyM
- Labi
- TomCat
- Maxius
- pat
- Madhouse
- 666wicked666
- master963
- A Zayed
- DawPi
- onlyME
- Kirill Gromov
- Thesis
- Split
- Drufuss
- muovar
- PPlanet
- Kane
- Daniel N
- Labis
- envy
- Sinistra
- Ryan
- V0RT3X
- Synergy
- Matt
- terabyte
- Mesharsky
- Astronis
- dottbuff
- aLEX49566
- bernhara
- markel
- Charlie Feigel
- Richard Arch
- isvans
- TheJimmo
- Drew Dowdell
- burnyourfeelings
- devvfck
- Jon Erickson
- adik
- kmk
- Voyage
- MichaelR
- sulervo
- LemonGrenade
- PalmersRightPeg
- We are Borg
- MissB
- Patreon Lukazuki
- Mitsuru
- ali hagi
- Hong98
- ijinxcxx
- ijinxcxx4k
- ButterflyPixel
- Luki
- flrn
- rivi235
- Aleksandar Markovic
- Como
- BEASTBOOSTER
- GazzaGarratt
- Roblox County DOJ Roleplay
- HDiddy
- Analog
- Dilip
- Destructor
- AnonDoggo
- Dani Onvlee
- Anthony Feng
- MythonPonty
- GrantHorizons
- abobader
- eliteone
- ArashDev
- Brian
- Cory McElroy
- Videoflicks
- Empire
- Nebulous
- aXenDev
- ITV
- Denis Dyack
- Claudia999
- Ticaga
- npnchicago